Fast Exact Area Image Upsampling
with Natural Biquadratic Histosplines

Nicolas Robidoux!, Adam Turcotte!, Minglun Gong?, and Annie Tousignant!

! Laurentian University, Sudbury ON P3E 2C6, Canada
nrobidoux@cs.laurentian.ca
http://www.cs.laurentian.ca/resampling
2 Memorial University of Newfoundland, St. John’s NL A1C 557, Canada

Abstract. Interpreting pixel values as averages over abutting squares
mimics the image capture process. Average Matching (AM) exact area
resampling involves the construction of a surface with averages given by
the pixel values; the surface is then averaged over new pixel areas. AM re-
sampling approximately preserves local averages (error bounds are given).
Also, original images are recovered by box filtering when the magnification
factor is an integer in both directions. Natural biquadratic histosplines,
which satisfy a minimal norm property like bicubic splines, are used to con-
struct the AM surface. Recurrence relations associated with tridiagonal
systems allow the computation of tensor B-Spline coefficients at modest
cost and their storage in reduced precision with little accuracy loss. Pixel
values are then obtained by multiplication by narrow band matrices com-
puted from B-Spline antiderivatives. Tests involving the re-enlargement of
images downsampled with box filtering suggest that natural biquadratic
histopolation is the best linear upsampling reconstructor.

1 From Point Values to Pixel Averages

Image upsampling is most commonly implemented as a two step process [I].
First, interpolation is used to construct a continuous version of the image: a
surface f(x,y) such that

f(xj,y)) =pij (reconstruction). (1)

Here, p;; is the pixel value with index (i, j), and (x;,y;) is the position of the
corresponding pixel. The reconstructed surface is then resampled at the desired
rate, that is, the pixel values P;; of the upsampled image are given by

Pry=f(X;,Y)) (sampling), (2)

where (X,, Y;) is the position of the corresponding pixel in the enlarged image.

1.1 Average Matching (AM) Image Resampling

Making the reconstructed light intensity surface have point values matching the
pixel values as in Eq. () ignores the fact that image sensors count incoming
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photons over small non-overlapping areas, so that pixel values are better inter-
preted as averages than point values [2]. This is a gross simplification of the
image capture process [3]. In addition, raw digital images are usually further
processed prior to magnification. It is nonetheless reasonable to expect the av-
erage value interpretation to yield better resampling schemes than the point
value interpretation [4]. We define average matching (AM) resampling to be ex-
act area resampling in which the pixels of the input image are assumed to be
abutting squares, and those of the output image, abutting rectangles [I]. In an
AM method, the reconstructed intensity surface is defined by

| (2 ki
2 f f(x,y)dxdy = p;j  (reconstruction)
Vimh/2 Jx;j=h/2

instead of Eq. (). Here, (xj,y;) is the center of the square pixel with index
(i, j) and h is the pixel’s width and height as well as the horizontal and vertical
distance between adjacent pixel centers. With i (resp. j) running from 0 to m—1
(resp. n—1), it is convenient to set x; = j+1/2 (resp. y; = i+1/2) so that the pixels
of the input image have unit sides. Then, an input image with m rows and n
columns has width n and height m, dimensions which differ from those usually
associated with interpolatory resampling, for which the placement of pixel points
right at the boundary of the image is generally understood to imply an image
width of n—1 and height of m—1. Likewise, the pixel values of the upsampled
image are given by

1 Yi+AY/2 ~X,+AX/2
Pry = —f f f(x,y)dxdy  (sampling)
AXAY Jy,_avy2 Jx,-axp2

instead of Eq. [@)); here, (Xy,Y;) is the position of the center of the resampled
image’s pixel with index (I, J), AX is the pixel width, and AY is the pixel height.
For an output image with M rows and N columns, choosing AX = n/N and
AY = m/M makes the implied dimensions of the output image identical to those
of the input image. With these conventions, the steps of an AM method are

i+1 ~j+l
f f(x,y)dxdy = pi; (reconstruction), (3)
i J
MN (D% (D% .
Py = o f f(x,y)dxdy (sampling). (4)
5% 7

1.2 Box Filtering, the Simplest AM Resampler

The simplest and most common AM resampler is box filtering, for which the
reconstructed surface is constant over each pixel area; that is, Eq. (8] is satisfied
by setting f(x,y) = p;; over the square (j, j+1)X (i, #+1), as in nearest neighbor in-
terpolation. (In box filtering, the values of f at points halfway between two pixel
centers are irrelevant because pixel boundaries do not contribute anything to the
integrals.) Box filtering is commonly used to downsample images. For example, it
is the default GNU Image Manipulation Program (GIMP) downsizing method.
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As an upsampling method, however, box filtering is not very popular, giving
results similar—often identical—to nearest neighbor interpolation. Nonetheless,
it is the “quality” Java Abstract Window Toolkit (AWT) image magnification
method [5]: enlargement by pixel replication to a large intermediate image with
dimensions equal to the LCMs of those of the input and output images, followed
by averaging of the values of pixels which cover each output pixel.

1.3 AM Methods Approximately Preserve Local Averages

AM methods share a very attractive property: The pixel averages of the resam-
pled image approximate those of the original image over corresponding regions.
More specifically, let £ be a subset of {0,1,...,M—1}x{0,1,...,N—1} and
n n m m
Q= [J—,(J+1)—]><[I—,(I+1)—],
(Ig)Jez N N M M
be the region covered by the pixels with indices in X, with area |Q| equal to
(IZmn)/(MN), |Z| being the cardinality of X. Also let o~ be a collection of input
pixel indices and w be the region covered by the corresponding pixels. Because
input pixels have unit area, |w| = |o|. Eq. B)—#) imply that

Q
ffdA:U ZP,J, and ffdA:M Zpi,j.
Q 1| (. D)ex w | (i,))eo

Now, suppose that minval, the smallest possible pixel value, is 0. The difference
between the respective pixel averages satisfies

I 1 1 ol 1
— NP, - = il < — A+l-=|= Yp
5 2P 2 S [V +‘ o] [IZI 2. ”]
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<
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If the alignment of the pixels of the input and output images is such that Q is a
union of input pixels, choosing w = Q makes the two averages identical because
the symmetric difference QAw is empty. This is the case when Q covers the entire
image. Consequently, pixel averages are globally preserved by AM methods.
We now specifically address local average preservation. When m divides M
and n divides N, one can make Q equal to w because output pixels are obtained
by evenly subdividing input pixels. Consequently, averages over unions of input
pixels are exactly preserved when the magnification factor is an integer in both
directions. Given X, however, it is generally impossible to choose o so that Q = w.
For simplicity, suppose from now on that Q is a rectangle with k output pixel
rows and [ columns. It is always possible to choose o so that w is a rectangle
with boundary at most 1/2 away from the boundary of Q. With this choice,
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Provided Q has a bounded aspect ratio, the first factor of this upper bound goes
to zero as [¥| increases. Because pixel averages can’t be larger than maxval (the
largest possible pixel value) and, for a reasonable reconstructor, |f| stays within
a small multiple of maxval, the opening statement of this section is established,
at least as far as averages over large squarish rectangles are concerned.

If the reconstructed surface f(x,y) stays within the interval [0, maxval], as
is the case for monotone reconstructors, in particular for the nearest neighbor
reconstructor which is the basis of box filtering, the last factor of the bound
which appears in Eq. (@) is at most 2 maxval. Natural biquadratic histopolation,
however, is not monotone: the range of f is generally not contained within the
range of pixel values. We conjecture that the worst possible value of f for natu-
ral biquadratic histopolation is found at the center of an “infinite” checkerboard
with an odd number of rows and columns. Using symmetry, this can be shown
to be 9maxval / 4, so that the last factor of Eq. (&) is conjectured to be bounded
by 13 maxval /4 (provided no clamping occurs; see §1.4). (Crude estimates based
on the maximum values of the four, six or nine biquadratic B-spline basis func-
tions with support overlapping an input pixel, together with coefficient estimates
which rely on the infinity norm of the inverse of the matrix A discussed below,
lead to a rigorous bound on the last factor of Eq. (@) equal to 489 maxval / 32.)

1.4 Box Filtering Is a Left Inverse of Integer AM Upsampling

A well-known property of box filtering—and some implementations of nearest
neighbor interpolation, ImageMagick’s among them—is that if an image is up-
sampled by an integer factor in both directions, then downsampled back to the
original size, the original image is recovered. In other words, box filter downsam-
pling is a left inverse of box filter upsampling when m divides M and n divides
N. Because integrating, and consequently averaging, over several pixels is the
same as averaging the pixel averages, this property also holds for all monotone
AM methods. With a non-monotone reconstructor, f(x,y) may overshoot maxval
or undershoot minval. Although overshoots and undershoots are averaged out
somewhat by the sampling step (@), which involves box filtering over the areas of
output pixels, some pixel values end up being clamped down to maxval, leading
to “average intensity loss,” or clamped up to minval, leading to “average in-
tensity gain.” Consequently, downsampling with box filtering a clamped integer
enlargement back to its original size may not return the original, and the above
bounds on pixel averages may not hold. (Rounding to integer pixel values and
round off error also contribute to these properties being approximate even for
monotone AM methods, but their contributions tend to average to zero, while
clamping tends to locally happen in only one of the two possible directions.)

2 Natural Biquadratic Histosplines

C. de Boor [6] introduces parabolic “area matching” splines in the context of
histogram smoothing: Given n+1 real numbers xo < x; < -+ < x, defining
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the bins of n histogram bars, and n numbers py, p1,..., p,—1 which define their
heights, the natural quadratic histopline is the unique continuously differentiable
function f(x) with domain [x, x,,] such that f(x) is a quadratic polynomial on
each interval [x;, xj41], ﬁ ijmf(x) dx = p; for every j, and f"(xo) = f(x,) =
0. Alternately, it can be defined as the derivative of the natural cubic spline
[6] which interpolates the cumulative integral associated with the pixel values,
that is, the natural cubic spline with value Z)Z;(l) pr at x; [7I8]. Extending this
construction to the bivariate situation by tensor product [6] yields the following:

Definition 1. The natural biquadratic histospline surface function is the unique
continuous function f with domain [0,n] X [0,m] such that

— f(x,y) is a linear combination of 1, x, y, x*, xy, y*, X2y, xy* and x*y* on every
input pizel [j, j+1]x [i,i+1],

— f satisfies the average matching condition (3)), and

— f has a continuous gradient and cross-derivative, and its normal derivative
vanishes at every point of the boundary of its domain (natural boundary
conditions).

Like bicubic splines, biquadratic histosplines satisfy a minimal norm property:

Theorem 1. [9] The natural biquadratic histospline is the smooth average match-
ing function with a cross-derivative with least RMS norm. More precisely, the natu-

ral biquadratic histospline minimizes fomfon(%)zdxdy over all f which satisfy Eq. @3]

in the Wiener function space Wé’l.

3 Fast Natural Histospline Computation and Sampling

In 1979, W. Tobler and J. Lau used a sinc-like cardinal natural biquadratic
histospline basis to upsample images [I0]; to the authors’ knowledge, theirs is
the only published reference to the use of global histosplines for image resam-
pling. In 1993, J. Kobza and J. Ml¢dk published algorithms for the computa-
tion of biquadratic histospline surfaces in piecewise polynomial form for various
boundary conditions and tensor grids [9]. Our method relies on B-Splines [6/11].
While local and global interpolatory splines and B-Splines have seen much use
for image interpolation and smoothing—to wit the many entries in the visionbib
database—we are not aware of any previous work on global or local histopolation
based on B-Splines ([§] and [12] come close).

Natural biquadratic histospline resampling is fully defined by its univariate
components: It is the tensor product of two univariate methods which compute
quadratic histosplines [§]. In the reconstruction stage (Eq. @), tensor B-Spline
coefficients are obtained by solving one tridiagonal linear system per image row
and column. In the sampling stage (Eq. (@])), each pixel row of the resampled im-
age is obtained from the tensor B-Spline coefficients by the “vertical” application
of the linear operator corresponding to integration with respect to y—this only
requires three rows of B-Spline coefficients at any given time, four if the output
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row being computed overlaps two input rows—followed by the “horizontal” ap-
plication, within the output row, of the analog of integration with respect to x
[1]. (Note: In our implementation, reconstruction and sampling are interwoven.)

3.1 Computing Histosplines with Piecewise B-Spline Antiderivatives

The following division free [I3] implementation of fast solution methods for spe-
cial tridiagonal linear systems [I4UT5] is analogous to the fast computation of
cubic splines by recursive causal and anti-causal filtering [11].

Univariate histosplines are computed as f(x) = X"} a jB;.(x), where

=0
[ x(6-x?) on [0,1),
BO(X)_{t(3+t(—3+t)), where £ = x— 1, on [1,2); (6)
s, where s = x - (j—1), on [j-1,)),
Bj(x) =313 —1(-3+21)), wheret=x-j, on [j,j+1), (7)
uB+u(-3+u), where u=x—(j+1), on [j+1,j+2);
B,_1(x) = Bo(n — x) on [n—2,n). (8)

Although B; is discontinuous, B’ is continuously differentiable. This formula-
tion of the natural quadratic histospline basis {B.li 7;(1), in terms of piecewise an-
tiderivatives which vanish at every integer, leads to the accurate computation
of the integrals of the basis functions over arbitrary intervals. (The discrepancy
in constants of integration only needs to be taken into account when the sam-
pling interval of integration contains an integer.) The function f(x) satisfies the
univariate version of the average matching condition (@) if and only if

?}‘ . % 1 dy 1 a go
1 1 1 1
141 a Ol & dlz . a P2
= = N
141 A : an P
141\ as ey 1 dia 1 || @ o
157 Nap [ dy o) Put
—_————
A L U
where
1 1 1 1 1 1
o= =7 Cj:_: (]:1v27"'vn_2)7 Cn-1 = = .
d() 5 dj 4—Cj_1 dn—l 5 —Cp-2

This increasing recurrence relation, which defines a continued fraction, converges
exponentially [I6]. In fact, ¢ is indistinguishable from the limit 2—v/3 in single
precision, ¢4, in double precision. Consequently, L' and U~! can be hard-coded
with eight constants in single precision, sixteen in double precision, and Gaussian
elimination mostly involves row operations with fixed multiplier ¢ = 2 —/3:
pj < pj—cpj-1 in the forward elimination stage, p; < c¢(p; — pjs1) in the back
substitution. (For 8 and 16 bit images, truncating the c; sequence on the basis
of floating point precision is overkill: fewer cjs can be used with no ill effect.)
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Forward elimination requires n—1 multiplications and n—1 subtractions, back
substitution, n multiplications and n—1 subtractions, for a total of 2n—1 mul-
tiplications and 2n—2 subtractions. In order to compute the coefficients of the
biquadratic histospline, one Gaussian elimination must be performed for every
row and column of the image. Consequently, 4mn — m — n multiplications and
4mn — 2m — 2n subtractions—Iless than 8 flops per input pixel—are needed to
compute tensor B-Spline coefficients for an n X m greyscale image.

3.2 Packing Partially Computed Coefficients into Small Data Types

An 8bit color depth for input and output image pixel values is assumed in the
remainder of this article.

Unlike local methods, global interpolatory and histopolating spline methods
require either the use of globally defined cardinal basis functions analogous to
tensor products of sinc functions [I0]—for which the determination of expansion
coefficients (reconstruction) is trivial but the evaluation (resampling) is costly—
or the use of local bases like B-Splines [6/T1] or piecewise polynomials [9], which
requires the global storage of partially or fully computed expansion coefficients.

Four versions of natural biquadratic histospline upsampling are implemented
in C. The versions differ in the type of the data array used to store partially
computed B-Spline coefficients: double, float, uint16, or uchars. Storing the coef-
ficients corresponding to a color channel as doubles uses eight times the memory
of the color channel; using uchars, one can overwrite the image with coefficients.

We present the key features of the uchar implementation; the uint16 version,
which produces enlargements essentially identical to the double and float ver-
sions, is similar. Gaussian elimination is first performed within each input image
pixel column as follows: Each input pixel value, in the range [0,255], is scaled
and shifted to the range [-255,255] with the affine mapping p — 2p—255 and
stored into a float array of length m (p +— 2p—255 can be performed in in-
teger arithmetic: no flop required). Gaussian elimination maps [-255,255] into
(—127.5,127.5). Here is a proof of this fact: If we show that [—1, 1] is mapped
into (-=1/2,1/2), we are done. The forward elimination stage consists of

pi «— pi — Ci—lpi—l (l = l,m—l).
Because the ¢;s are positive,
Pil<1+co; [pal T +c1(Q+co)=1+cy +coct; |p3sl <1+ ¢+ cicr + cocica, ete.
For every i, ¢; < ¢ = 2—V3, so that |p;| < 1/1 —¢ = C. The back substitution stage
consists of
Pm-1 < Cm1Pm-1, and p; < ¢{(pi — pir1) (i =m=2,0).
Consequently,

1Pm-1l < Cepmt; 1Pm-2l < cu2(C + Ccpyo1) = ClCp2 + Cp2Cm-1), ete.

At the end of Gaussian elimination, |p;] < Cc/(1 —¢) = 1/2 for every i, which
establishes that ||A™!||l < 1/2 [17]. This bound is asymptotically tight: the seesaw
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mode comes arbitrarily close to attaining it. Now that we know that the half-
computed B-Spline coefficient values are in the interval (—127.5,127.5), we can
safely store them as uchars by adding 128. and casting.

The solution a of Aa = p can be recovered cheaply from the solution a of
A(a—127.5) = 2p—255 because constant vectors are eigenvectors of A with eigen-
value 6, which implies that a = .5(2—85). Because the multiplication by .5 can be
folded into the sampling stage at no cost—by merging .5, together with the mul-
tiplication by MN/mn, into quadrature coefficients—shifting /packing/unpacking
only requires one additional flop (adding 128.). Only one such packing/unpacking
is necessary, for the following reason: The pixel values of an output row depend
on the B-Spline coefficients corresponding to at most four input rows. Conse-
quently, only four rows—three with integer magnification factors—of B-Spline
coeflicients are needed at any time, which implies that we can afford to compute
and store them in floating point. (In 3D, three or four floating point B-Spline
coefficient “slabs” should be used.) B-Spline coefficient rows only need to be
computed once if output pixel rows are computed from top to bottom and co-
efficients are computed when needed. This implies that the error introduced by
packing and unpacking the coefficients in and out of uchars is minimal. The
following back of the envelope estimate suggest that typically the effect of pack-
ing/unpacking on output pixel values is at most 3, as is observed in practice:
Suppose that there is no other source of error besides packing/unpacking. Round-
ing values when packing the half-computed coefficients into uchars introduces an
error < .5. Unpacking multiplies this error by .5. Row by row Gaussian elimina-
tion now puts the B-Spline coefficient error in the interval (—1/8,1/8). Assuming
that the error of an output pixel comes from the error in one B-Spline coeffi-
cient, Eq. () implies that the largest pixel errors introduced by uchar storage
are 1/8 x (9/2)*> = 81/32 ~ 3 in the worst case situation M > m and N > n. (Us-
ing a pessimistic but rigorous estimate as in §1.3 gives a bound of 441/32 ~ 14.)
Similar estimates suggest that uint16 storage introduces insignificant pixel error
(no more than 81/8224 ~ .01).

3.3 Tensor Computation of Pixel Integrals (Sampling Stage)

Because at most four contiguous quadratic B-Splines overlap any given interval
of length at most 1, the linear quadrature which maps B-Spline coefficients to
output pixel values is completely described by four (three for integer magnifi-
cation) double arrays of length m and four (three) double arrays of length n,
together with two integer arrays, of lengths m—1 and n—1, which specify relevant
index ranges. Output pixel rows can be computed one at a time with about
4 x4 +4 = 20 floating point multiplications and 4 X 3 + 3 = 16 additions per
output pixel value (3 X 3 =9 multiplications and 3 X 2 + 2 = 8 additions if both
magnification factors are integers), the same as local bicubic resampling. (Taking
non-overlapping output pixels into account lowers the flop count.)

3.4 Overall Computation Cost

About 8mn +36MN flops per color channel are needed to enlarge an image from
dimensions nxm to NxM (8mn+17MN flops if m divides M and n divides N). Our
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GIMP natural biquadratic histopolation plug-ins upsample large images more
rapidly than the built-in bicubic resampler but more slowly than the built-in
bilinear one.

4 Quantitative Comparison with Other Linear Methods

Twenty linear resampling methods are compared to the double, float, uint16
and uchar versions of natural biquadratic histopolation: box filtering, natural
and not-a-knot bicubic spline interpolation, and seventeen ImageMagick filters
used with default settings. The test suite is set up so that errors do not originate
from image size convention mismatch (the “center” convention NxM vs. the
“corner” convention (N—1) x (M—1)): ImageMagick uses the same convention as
this article’s AM methods (this is undocumented: see the resize.c source code);
our Scilab/SIVP implementations of cubic spline interpolation use the N x M
image size convention as well. Although the “center” image size convention is
not the most commonly used for interpolatory resampling, this levels the field.

4.1 Test Setup

Ten copyfree digital images—photographs and scans of small objects (J.-F.
Avon), astronauts and spacecraft (NASA), a woodcut print of a wave (K. Hoku-
sai), a chapel (M. Ryckaert), a katydid (wikipedia user wadems), a seated man
(S. Prokudin-Gorskii), a vervet in a tree (W. Welles), as well as close ups of
a baby (M. Gong) and a man (A. Adams)—are cropped to 1680x1680. The
crops are then downsampled with box filtering to 840x840, 560x560, 420x420,
336x336, 280x280, 240x240 and 210%x210. Downsampling by an integer factor
with box filtering mimics the image capture process; more importantly, it does
not introduce error (other than rounding). For this reason, the downsampled
versions of the cropped originals are treated as if error-free. For the integer
magnification tests, they are enlarged back to 1680x1680. For the rational mag-
nification tests, they are enlarged to the next larger size; for example, tests
with magnification factor 3/2 are performed by enlarging 560x560 images to
840x840. Error measures are computed by comparing the re-enlargements to
the cropped originals (integer magnification) or their downsampled versions (ra-
tional magnification). Four carefully implemented error metrics are used: Root
Mean Squared Error (RMSE), Average Absolute Error (AAE), Maximum Ab-
solute Error (MAE), and Mean Structural SIMililarity index (MSSIM) [I§],
analogous to a correlation in that larger MSSIMs correspond to smaller er-
rors. The seventy integer (for each method) magnification results (one per test
image and integer magnification) are amalgamated as follows: the RMSEs by
taking the square root of the mean of their squares, the AAEs, MAEs and
MSSIMs by plain averaging; likewise for the sixty rational magnification re-
sults. Making exceptions for box filtering, nearest neighbor interpolation and the
uchar version of natural biquadratic histopolation, we omit results for methods
which performed more poorly than bilinear interpolation in at least one of the
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Table 1. Test results: linear upsampling methods ranked by increasing RMSE

Test results for the rational magnification factors %, %, 27 D ‘3—‘ and %
Resampling method RMSE AAE MAE MSSIM
Natural biquadratic histospline (uint16) 4.9453524 2.3502549 68.7 .9679117
Natural biquadratic histospline (float) 4.9453652 2.3502540 68.7 .9679115
Natural biquadratic histospline (double) 4.9453653 2.3502542 68.7 .9679115
ImageMagick Hamming (windowed sinc) 4.9654332 2.4536258 69.0 .9669423
Scilab-SIVP natural bicubic spline 4.9746911 2.3496956 69.7 .9671314
ImageMagick Lanczos (3-lobes Lanczos) 4.9768380 2.4540594 69.0 .9670086
Scilab-SIVP not-a-knot bicubic spline 49772149 2.3514317  69.7  .9671094
ImageMagick Kaiser (windowed sinc) 4.9794970 2.4483523 69.4 .9669581
ImageMagick Hanning (windowed sinc)  4.9799794 2.4582932 69.2 .9668586
Natural biquadratic histospline (uchar)  4.9830553 2.4759742 68.9 .9652749
ImageMagick Blackman (windowed sinc) 5.0076199 2.4463746 70.0 .9668665
ImageMagick Welsh (windowed sinc) 5.0099166 2.5068305 69.3 .9659990
ImageMagick Parzen (windowed sinc) 5.0482158 2.4516398 70.7 .9666239
ImageMagick Catrom (Catmull-Rom) 5.2415191 2.5088389 73.4 .9650689
ImageMagick Lagrangian (bicubic) 5.3354821 2.5643617 74.2 .9636494
ImageMagick Mitchell (Mitc.-Netravali)  5.8867701 2.8302989  78.7 .9579545
Box filtering 6.1401973 2.7962816 82.1  .9575975
ImageMagick Hermite (w/ Vf(x;,y)=0) 6.1427426 2.8683378 82.0 .9572294
ImageMagick Triangle (bilinear) 6.2280344 2.9553329 83.3 .9547236
ImageMagick Point (nearest neighbor) 8.2601463 3.5089177 106.6 .9413052

Test results for the integer magnification factors 2, 3, 4,5, 6, 7 and 8

Resampling method RMSE AAE MAE MSSIM
Natural biquadratic histospline (uint16) 9.7425786 4.4851986 139.4 .8450685
Natural biquadratic histospline (double) 9.7425817 4.4851985 139.4 .8450685
Natural biquadratic histospline (float) 9.7425817 4.4851987 139.4 .8450685
ImageMagick Hamming (windowed sinc) 10.026813 4.6403736 140.6 .8393992
ImageMagick Welsh (windowed sinc) 10.036087 4.6717838 140.6 .8379616
ImageMagick Lanczos (3-lobes Lanczos) 10.042201 4.6440940 140.8 .8394069
ImageMagick Hanning (windowed sinc)  10.051135 4.6523516 140.6 .8393168
ImageMagick Kaiser (windowed sinc) 10.055531 4.6466714 140.9 .8395413
Scilab-SIVP natural bicubic spline 10.078684 4.6170044 141.0 .8396235
Scilab-SIVP not-a-knot bicubic spline 10.081273 4.6188794 141.0 .8395692
ImageMagick Blackman (windowed sinc) 10.088110 4.6523029 141.1 .8396107
ImageMagick Parzen (windowed sinc) 10.123885 4.6610338 141.6 .8395226
ImageMagick Catrom (Catmull-Rom) 10.274565 4.7180942 143.1 .8380914
ImageMagick Lagrangian (bicubic) 10.388237 4.7850457 143.9 .8354883
ImageMagick Mitchell (Mitc.-Netravali)  10.826885 5.0324787 146.6 .8298020
ImageMagick Hermite (w/ Vf(x;,y)=0) 10.851653 4.9917407 148.8 .8305381
ImageMagick Triangle (bilinear) 11.020940 5.1227437 149.5 .8273934
Natural biquadratic histospline (uchar)  12.159461 5.1615913 139.4 .8429333
Box filtering = ImageMagick Point 12.172721 5.3349523 165.4 .8023312
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two groups of tests: the ImageMagick methods Bessel (windowed jinc), Gaus-
sian (Gaussian blur), and Quadratic and Cubic (polynomial approximations of
Gaussian blur).

4.2 Test Results

As seen in Table[T] the double, single and uint16 versions of natural biquadratic
histopolation best the other methods with respect to every error metric, with a
single exception, natural bicubic spline interpolation, which gets a lower AAE in
the (small) rational magnification tests. This suggests that natural biquadratic
spline histopolation may be the most accurate reconstructor.

Here is a brief discussion of subjective image quality. Enlargements computed
with natural biquadratic histopolation are unquestionably the sharpest: Small
details really stand out. However, they show a lot of haloing, probably the most
of all tested methods. Aliasing is also noticeable, although less so than with
some of the other methods. This suggests that a box filtered version of natural
biquadratic histopolation may yield more visually pleasing enlargements.
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